busca no site


Seriam os Big Data capazes de prever o comportamento de Sistemas Complexos?

Resumo/Abstract
Ricardo Peraça Cavassane

Resumo

Neste artigo propomos uma investigação acerca da adequação de modelos estatísticos baseados em Big Data à descrição e previsão do comportamento de sistemas complexos auto-organizados, como aqueles que envolvem agentes humanos, uma vez que tais sistemas se caracterizam pela atuação da causalidade circular, e que tais modelos, segundo seus próprios entusiastas, forneceriam explicações baseadas apenas em correlações, sem identificar quaisquer relações de causalidade.

Palavras-chave: Big Data. Sistemas Complexos. Causalidade. Correlação.

Abstract

In this paper we propose an investigation about the adequacy of statistical models based on Big Data to the description and prediction of the behavior of self-organized complex systems, like those that involve human agents, since such systems are characterized by the action of circular causality, and that such models, according to their own enthusiasts, would provide explanations based solely on correlations, without identifying any relations of causality.

Keywords: Big Data. Complex Systems. Causality. Correlation.

Paper / PDF

Download PDF

 

Bibliografia

REFERÊNCIAS BIBLIOGRÁFICAS

CHRIS ANDERSON. End of Theory: Will the Data Deluge Make the Scientific Method Obsolete? Wired Magazine. [online] Disponível em: <https://www.wired.com/2008/06/pb-theory>. Acesso em 01/08/2018.

ASHBY, William Ross. Principles of the self-organizing system. In: VON FOERSTER, Heinz; ZOPF, George. (eds.), Principles of Self-Organization: Transactions of the University of Illinois Symposium. London: Pergamon Press, 1962, p. 255-278.

DAVID AUERBACH. Big Data is Overrated: And Ok-Cupid’s User Experiments Prove It. Slate. [online] Disponível em: <http://www.slate.com/articles/technology/bitwise/2014/07/facebook_okcupid_user_experiments_ethics_aside_they_show_us_the_limitations.html>. Acesso em 01/08/2018.

______. The Big Data Paradox: It’s never complete, and it’s always messy – and if it’s not, you can’t trust it. In: Slate. [online] Disponível em: <http://www.slate.com/articles/technology/bitwise/2014/08/what_is_big_data_good_for_incremental_change_not_big_paradigm_shifts.html>. Acesso em 01/08/2018.

BOWKER, Geoffrey. Memory Practices in the Sciences. Cambridge: MIT Press, 2005.

______. The Theory/Data Thing: Commentary. International Journal of Communication, Los Angeles, v. 8, 2014, p. 1795-1799.

BOYD, danah; CRAWFORD, Kate. Critical Questions for Big Data. Information, Communication & Society, London, v. 15, n. 5, 2012, p. 662-679.

BRESCIANI FILHO, Ettore; D’OTTAVIANO, Itala Maria Loffredo. Basic Concepts of Systemics. In: PEREIRA JR, Alfredo; PICKERING, William; GUDWIN, Ricardo. (eds.) Systems, self-organization and information: An Interdisciplinary Perspective. New York: Routledge, 2018, p. 48-64.

KATE CRAWFORD. The hidden biases in Big Data. In: Harvard Business Review. [online] Disponível em: <http://blogs.hbr.org/cs/2013/04/the_hidden_biases_in_big_data.html>. Acesso em 01/08/2018.

______.; MILTNER, Kate; GRAY, Mary. Critiquing Big Data: Politics, Ethics, Epistemology. International Journal of Communication, Los Angeles, v. 8, 2014, p. 1663-1672.

DEBRUN, Michel. The Idea of Self-Organization. In: PEREIRA JR, Alfredo; PICKERING, William; GUDWIN, Ricardo. (eds.) Systems, self-organization and information: An Interdisciplinary Perspective. New York: Routledge, 2018, p. 7-22.

DUPUY, Jean-Pierre. Science without Philosophy: The Case of Big Data. Crisis and Critique, v. 5, n. 1, 2018, p. 147-161.

EKBIA, Hamid et al. Big Data, Bigger Dilemmas: A Critical Review. Journal of the Association for Information Science and Technology, Hoboken, v. 66, n. 8, 2015, p. 1523-1545.

GONZALEZ, Maria Eunice Quilici; BROENS, Mariana Claudia; HASELAGER, Willem; BRESCIANI FILHO, Ettore. Self-organization and Life: A Systemic Approach. Manuscrito, Campinas, v. 28, n. 2, 2005, p. 375-390.

HAKEN, Hermann. Information and Self-Organization: A Macroscopic Approach to Complex Systems. Berlin: Springer Verlag, 2000.

IBEKWE-SANJUAN, Fidelia; BOWKER, Geoffrey. Implications of Big Data for Knowledge Organization. Knowledge Organization, Würzburg, n. 44, v. 3, 2017, p. 187-198.

KITCHIN, Rob. Big Data, new epistemologies and paradigm shifts. Big Data & Society, Thousand Oaks, 2014, p.1-12.

MAYER-SCHÖNBERGER, Viktor; CUKIER, Kenneth. Big Data: A Revolution That Will Transform How We Live, Work and Think. New York: Houghton Mifflin Harcourt, 2013.

MERTON, Robert. The Self-Fulfilling Prophecy. The Antioch Review, Yellow Springs, v. 8, n. 2, 1948, p. 193-210.

MITCHELL, Melanie. Complexity: A Guided Tour. Oxford: Oxford University Press, 2009.

O’NEIL, Cathy. Weapons of math destruction: how big data increases inequality and threatens democracy. New York: Crown Publishers, 2016.

SCHUTT, Rachel; O’NEIL, Cathy. Doing Data Science. Sebastopol: O’Reilly Media, 2014.

WEAVER, Warren. Science and Complexity. American Scientist, Research Triangle Park, v. 36, 1948, p. 536-544.

 

  • RSS
  • email
  • Digg
  • del.icio.us
  • Facebook
  • Google Bookmarks
  • LinkedIn
  • MySpace
  • Netvibes
  • StumbleUpon
  • Tumblr
  • Twitter